
Building Custom Kernel Modules

Chris Jenkins - Genesi USA, Inc

Terminology

● “Kernel Modules” are pieces of software (usually device drivers) that are not a part of the Linux

kernel proper but are executed in kernel space.

● “Built in” modules are compiled into the kernel image. They are loaded when the system boots

○ e.g. the MMC driver for the Efika MX53 (or the Drónov Slimbook)

● “Dynamically loaded” modules are loaded / removed during system run-time, either as needed

or manually using commands from kmod package (e.g. insmod, rmmod)

● *.ko: kernel object files; the compiled kernel module

Prerequisites

● The same software tools needed to compile the Linux kernel (make, gcc)

○ I will assume you are cross-compiling modules, but in theory you should be able to build

them on an Efika MX53 system (such as the Drónov Slimbook) itself

● kmod: package with utilities for loading / unloading kernel modules.

○ insmod: insert module

○ rmmod: remove module

○ lsmod: show loaded modules

○ modinfo ${KO_FILE}: print metadata of module

If you are building on an Efika MX53 system, you can just download the Linux kernel headers (much

more feasible than downloading the kernel source) and build against those

$ sudo apt-get install linux-headers-`uname -r`

“Hello world” Module1

● Create a directory called “hello-module” and change to it

○ This example will create it in the root of the kernel source repo itself

● Create files hello.c and Makefile and open both with your favorite text editor

● Code for both files in following slides

1: Code taken from “The Linux Kernel Programming Guide” http://www.tldp.org/LDP/lkmpg/2.6/html/

http://www.tldp.org/LDP/lkmpg/2.6/html/

hello-1.c: Concepts

● init and exit functions

● Log levels (KERN_INFO)

● printk

Makefile: Concepts

● obj-y, obj-n, obj-m: include object into kernel image, exclude object from kernel image, and

compile object as kernel module

○ This is what obj-$(CONFIG_MYOPTION) is all about. We’ll worry about kernel

configuration another time.

● arguments to make:

○ -C ${DIR}: change directory before executing. This should be the directory with the

kernel headers

○ M=$(PWD): Location of module

○ ARCH=${arch}, CROSS_COMPILE=${ccc}: Same as with building Linux kernel

Compile & Insert hello-1

● In your module directory, type make

● If successful, your directory will have the following files:

hello-1.c hello-1.mod.c hello-1.o Module.symvers

hello-1.ko hello-1.mod.o modules.order

● Check the module meta-data:

modinfo hello-1.ko

● Move hello-1.ko to your Efika MX53 system (such as a Drónov

Slimbook), and insert (from terminal): sudo insmod hello-1.ko

● There will be no console output. Instead, check kernel logs

dmesg | tail

● And remove:

sudo rmmod hello_1

○ Note that the dash was converted to an underscore!

Extended example

hello-ext.c: Concepts

● init: macro definitions for special init and exit code

○ __init marks your function as an initializer only. After boot the kernel will delete it from active
memory. __init_data is similar, but for data

○ __exit marks your function as cleanup only. If it is a built-in module, this code is also deleted from
memory

○ module_init(), module_exit(): macros marking which functions should be used for init and exit of
the module, resp. Using these with more descriptive function names than “init_module” and
“exit_module” is preferred style.

● Licensing and Module Info

○ MODULE_LICENSE: Module software license. You will get compile complaints if not GPL-compatible,
but only complaints (does not affect code)

○ MODULE_AUTHOR(), MODULE_DESCRIPTION(): Self explanatory.
○ MODULE_SUPPORTED_DEVICE(): Used to document which devices the module is intended for
○ You can test this was configured correctly with modinfo

Advanced Example

Here is the code snippet we use to build the wireless driver modules:

#build sagrad compat-wireless

kernelrelease=$(cat $currentpath/source/include/config/kernel.release)

cd sagrad-wifi/compat-wireless

make KLIB_BUILD=$currentpath/source -j8 # similar to our -C option

cd $currentpath

mkdir -p modules/lib/modules/$kernelrelease/updates

rsync -avr `find sagrad-wifi/compat-wireless -name '*.ko'`

 modules/lib/modules/$kernelrelease/updates

mkdir -p modules/lib/firmware

rsync -avr sagrad-wifi/FIRMWARE/ modules/lib/firmware

cd modules

tar cjvf ../extra-modules-$kernelrelease.tar.bz2 .

cd $currentpath

rm -rf modules

